# Classification

Elements of a model Objective Model structure (e.g. variables, formula, equation, parameters) Model assumptions Parameter estimates and interpretation Model fit (e.g. goodness-of-fit tests and statistics) Model selection LDA generative model model p(x|y) as multivariate Gaussian, Both classes have the same covariance matrix, Σ QDA Each class has their own Σ Naive Bayes generative model Assume the xj… Continue reading Classification